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ABSTRACT 

There are many generalization of metric space. Parametric metric space is the generalization of metric space too. Which 

was introduced and studied by Hussian (a new approach to metric space) in 2014. In present paper we prove two fixed 

point theorems based on injective mapping using contraction conditions. 
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INTRODUCTION 

General Introduction 

A metric on a nonempty set X is a mapping �: � × �[0. ∞]satisfying the following properties: 

• �(�, �) = 0 If and if � = � 

• �(�, �) = �(�, �) 

• �(�, �) ≤ �(�, �) + �(�, �) ; then the pair (X, d) is said to be a metric spaces. 

The theory of metric spaces is the general theory which covers several branches of mathematical analysis, as real 

analysis, complex analysis, multidimensional calculus, etc. Due to which, existence and uniqueness of fixed points and 

common fixed points has become a subject of great concern. In the recent six decades many authors generalized the 

Banach contraction Principle by moderating the triangular inequality of a metric space as generalized metric space[see 

2,5,7-8,14,22 and references therein], cone metric space[see 9 references therein], b metric space[see 2,3,4,6 references 

therein ], cone b metric space[see9,10,11,14-22 references therein ], rectangular metric space [see 17 references therein ], 

cone rectangular metric space [see 12,17,18 references therein], are some of the generalizations of metric space introduced 

by different authors in past few decades. Analogue Banach contraction principle, Kannan contraction principle, Ciric 

contraction principle and lots of the existing fixed point theorems for various generalized contractions were proved in these 

generalized spaces. 

Most of the generalization of metric space are Hausdorff topology but we can also find generalization of metric 

space which are not necessarily Hausdorff topology (see, ref. [13, 19, 22,]). Tarskian mathematician used non Hausdorff 

topology for programming language semantics used in computer science. 
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The purpose of this paper is to prove some fixed point theorems for contraction mapping in parametric metric 

spaces An example is also given to distinguish our results. 

PRELIMINARIES 

Proceeding to our main result, let we furnish some definition, proposition, properties & lemmas  needed in sequel. 

1. Let X be a non empty set and dp: X × X × (0, ∞) → (0, ∞) be a map on X such that 

∀ �, �, � ∈ � and � > 0 

• dp(�, �, �) = 0 if and only if � = � 

• dp(�, �, �) = dp(�, �, �) 

• dp(�, �, �) ≤ dp(�, �, �) + dp(�, �, �) 

Then dp is called parametric metric and pair (�, dp) is called parametric metric space.  

• If lim 	→∞(�	, �, �) = 0 ⇒ lim	→∞ �	 = � , for all � > 0 then sequence {�	} ∞ n=1 converses � ∈ � 

• If lim 	→∞(�	, ��, �) = 0 for all � > 0 then sequence {�	} ∞ n=1  is called Cauchy sequence. 

• If every Cauchy sequence is convergent, then parametric metric space (�, d) is a complete parametric metric space. 

Let (X, d) be a parametric metric space and �: � → � be a mapping, then We say T is a continuous mapping at p 

in X, if for any sequence {�	} ∞ n=1 ∈ � such that log	→∞ �	 =  

� ⇒ log	→∞ ��	 = �� . 

DEFINITION 

Let X be a nonempty set, 
 ≥ 1be a real number and ��: � × � × (0; 1) ∈ [0; 1]; such that 

• Pb(�, �, �) = 0 if and only if � = � 

• Pb(�, �, �) = Pb(�, �, �) 

• Pb(�, �, �) ≤ s[Pb(�, �, �) + Pb(�, �, �) ] ∀ �, �, � ∈ � and � > 0 �	� 
 ≥ 1 

Then, Pb is called parametric b-metric on X and (�, Pb) is called parametric b-metric spaces. 

The following definitions and results will be needed in the sequel which can be 

MAIN RESULT 

The objective of this paper is to prove some new fixed point theorems in parametric metric space. This paper is divided in 

two sections. In Section I and II we prove theorems on parametric metric spaces. 

SECTION I 

Theorem 2 

Let (�, �) be a complete parametric metric space and ��: � → � be an injective mapping satisfying the condition 
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∀ � ∈ [0,1); �, �, � > 0; �, � ∈ � & � ≠ � have a fixed point if � + � 2 + � 2 < 1 and moreover a unique fixed 

point if � + � < 1. 

Proof 

Let ss�0 ∈ � , Define iterative sequence{�	} 	=1 ∞ follows: ���	 = �	+1 for 	 = 1, 2, 3, …. If for some n, ���	 = �	, 

then �	 is the fixed point. Otherwise���	 ≠ �	, using inequality 
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As we know if {�	} 	→∞ be a sequence in parametric space(�, �) such that �(�	+1, �	+2, �) ≤ � �(�	, �	+1, �) 

∀ � ∈ [0,1) & 	 = 1,2,3, … then{�	} 	→∞ is a Cauchy sequence in (�, �). Since (�, �) is a complete parametric space; 

{ �	} 	→∞ converses. Let �∗  ∈ � , then ���	→∞ �	 → �∗ . Again �� is continuous, therefore 

 

Implies �� has a fixed point ���∗ = �∗ in X. 

Now we will show that �∗ is unique. for that suppose �∗ is another fixed point therefore ���∗ = �∗. Therefore by 

inequality (2.1) we have 

 

SECTION II 

Theorems 

Let (�, ��) be a complete parametric b- metric space and ��: � → � be a orbitally continuous self-map satisfying the 

condition 

 

Proof 

Let �0 ∈ �, Define iterative sequence {�	} 	=1 ∞ follows: ���	 = �	+1 for 	 = 1, 2, 3, …. If for some n ���	 = �	, then 

�	 is the fixed point. Otherwise���	 ≠ �	, using in equality(3.1) 
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Therefore by successive iteration 

 

As we know if {�	} 	→∞ be a sequence in parametric space(�, �) such that �(�	+1, �	+2, �) ≤ �	 �(�0, �1, �) 

∀ � ∈ [0,1) & 	 = 1,2,3, … then{�	} 	→∞ is a Cauchy sequence in (�, �). Since (�, �) is a complete parametric 

space; {�	} 	→∞ converses. Let �∗  ∈ � , then ���	→∞ �	 → �∗ . Again �� is continuous, therefore 

 

Implies �� has a fixed point ���∗ = �∗ in X. 

Now we will show that �∗ is unique. for that suppose �∗ is another fixed point therefore ���∗ = �∗. Therefore by 

inequality (3.1) we have 
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